

Comparative Analysis of Bacterial Diversity in the Tomato Rhizosphere of Riparian and Non Riparian Zones through Culture-Independent Approach

Kumar Abhishek* and Shardendu

Laboratory of Environment and Biotechnology, Department of Botany, Patna University, INDIA

*singh.abhishekpu@gmail.com

Abstract

Bacterial communities in soil ecosystems play pivotal roles in nutrient cycling, organic matter decomposition and maintaining soil fertility, critical for sustaining agricultural productivity. This study explores the microbial diversity and community dynamics in rhizospheric soils of tomato plants from riparian and non-riparian zones in Bihar, India, leveraging next-generation sequencing (NGS) metagenomics. Physicochemical analyses revealed significant differences in soil properties between the two sites, influenced by their proximity to the Ganga River floodplain. Metagenomic analysis using the V3-V4 region of the 16S rRNA gene identified distinct microbial compositions and abundances in Soil1T16s (riparian) and Soil2T16s (non-riparian). Actinobacteria dominated both samples, with Proteobacteria and Firmicutes showing varying abundances. Taxonomic assignments highlighted specific bacterial classes, orders, families, genera and some species unique to each sample, indicating environmental adaptation and functional diversity.

Notably, Soil1T16s exhibited higher diversity and unique taxa potentially influenced by floodplain deposits, while Soil2T16s showed adaptations to drier conditions away from the river. This research underscores the ecological importance of microbial communities in agricultural soils and provides insights into their roles in ecosystem functioning and resilience.

Keywords: Metagenomics, Riparian Ecosystem, Tomato, Rhizosphere, NGS.

Introduction

Bacterial communities are vital for ecosystem functioning, contributing to numerous ecological processes. They decompose organic matter, recycle nutrients and maintain soil structure and fertility. Bacteria play key roles in nitrogen, carbon and nutrient cycling, which are essential for plant and organism growth. Found in diverse habitats like soil, water and living organisms, bacteria aid in nutrient release through organic matter decomposition. They also engage in plant-microbe interactions in various rhizosphere of different plants. Tomato (*Solanum lycopersicum*) is an important vegetable cultivated near the riparian zones of the Gangetic plain in Bihar, benefiting from favourable climatic

conditions. The soil in this area is highly fertile, enriched annually by the floodplain deposits of the Ganga River, which also promote a diverse bacterial population, further enhancing soil fertility.

The floodplain is also known as riparian ecosystem which serves as an ecotone between aquatic and terrestrial environments, influenced by factors such as turbulence, resource availability and the edge effects associated with emergent ecotones³³. Next-generation sequencing (NGS) tools, particularly metagenomics, offer valuable insights into the bacterial structure and community dynamics of Soil2T16s and Soil1T16s. This culture-independent approach has revolutionized our ability to explore bacterial diversity, not just identifying their presence but also determining their dominance within microbial populations^{12,37}. Metagenomics has been widely applied across diverse ecosystems, from the human gut microbiome^{20,29} to soil ecosystems^{7,16}, water bodies³², air environments² and plant materials²⁶.

The NGS metagenomics technique excels in identifying and characterizing microbial structures including non-culturable microbes residing in various environments¹⁷. This high-throughput sequencing technology allows comprehensive exploration of genetic diversity, functional potential and ecological roles of microbial communities without the limitations of traditional culturing methods. It enhances our understanding of microbial ecosystems by highlighting their intricate interactions, ecological functions and responses to environmental changes^{17,26,29}. Sequencing efforts in metagenomics focus on phylogenetic classification at the genus or species level across diverse microbial populations^{15,40}.

Through metagenomic analysis, we aim to elucidate the microbial compositions and ecological dynamics of Soil2T16s and Soil1T16s. By leveraging metagenomics, we seek novel insights into the structural attributes of these bacterial communities, advancing our understanding of soil microbial ecology and its broader implications for ecosystem health and sustainability.

Material and Methods

Selection of site and Sample collection: Two sites were selected to study bacterial biodiversity in rhizospheric soils of tomato plants, comparing riparian and non-riparian conditions. The first site was the rhizospheric soil of tomato plants from the riparian zone of the Ganga River at LCT Ghat, Patna, Bihar (25.6296° N, 85.1175° E) and the second

site was from non-riparian soil in Chandpura village, Hajipur, Bihar (25.5387° N, 85.3420° E). Tomato plants were uprooted and soil clinging to the roots was collected as rhizosphere soil. Samples from each site were homogenized, combined and 10g of soil was stored at 4°C for metagenomic analysis.

Physicochemical analysis of Soil Sample: The physicochemical analysis of soil samples included measuring pH with a glass electrode pH meter (1:2.5 soil-to-water ratio) and electrical conductivity (EC) using an EC meter (1:2.5 soil-to-water suspension). Organic carbon was determined by the wet oxidation method³⁹. Available nitrogen was estimated using the modified Kjeldahl method³⁴. Available phosphorus was quantified following Jackson's method¹⁴ and available potassium was measured by extracting it with 1N NH₄OAc and analyzing with a flame photometer¹⁴.

Metagenomic Approach for analysis of Culture-Independent Bacterial Diversity: The methodology was used for investigating the bacterial structure and community dynamics between Soil2T16s and Soil1T 16s samples. The main steps involved in this metagenomic process are: DNA extraction using DNA Power Soil Kit, then 16sF:- 5' AGAGTTTGATGAGTGGCTCAG3' and 16sR:- 5' TTACCGCGGCMGCGSGGCAC3' universal primers were used for PCR amplification of the V3-V4 region of the 16S gene with the mentioned primers and standard conditions. 40ng of extracted DNA was used for amplification along with 10pM of each primer.

Initial PCR steps involving denaturation are: 95 °C, 25 cycles of the following condition: denaturation at 95°C for 15 sec, annealing @ 60°C for 15 sec, elongation at 72°C for 2 mins, final extension at 72°C for 10 mins and hold at 4°C. The amplicons from each sample were purified with Ampure beads to remove unused primers and additional 8 cycles of PCR were performed using Illumina barcoded adapters to prepare the sequencing libraries.

Bioinformatics protocol: Libraries were purified using Ampure beads and quantitated using Qubit dsDNA High Sensitivity assay kit. Sequencing was performed using Illumina Miseq with 2 x 300PE v3 sequencing kit. Bioinformatics analysis included quality control, trimming, merging and taxonomic classification using QIIME, workflows and databases used was SILVA. This process enabled the identification of diverse bacteria and understanding of microbial community composition at different taxonomy level, facilitating insights into soil microbial ecology and ecosystem dynamics of our two samples namely Soil2T16s and Soil1T16s.

Results and Discussion

Physicochemical analysis of Soil Sample: Physicochemical properties of collected soil from two different locations were analyzed by various stranded parameter mentioned in table 1.

Raw data sequencing QC summary of the samples: The metagenomic analysis compared Soil1T16s and Soil2T16s based on the V3-V4 amplicon region, revealing 0.08 million reads in Soil1T16s with a 57.5% GC content and 0.2 million reads in Soil2T16s with a similar GC concentration as in table 2. These findings suggest differences in microbial diversity or community structure between the samples, despite their comparable GC content indicating similar proportions of GC-rich bacterial genomes.

GC content influences chimeric sequence generation rates and sequence recovery efficiency, with GC-rich sequences recovering more effectively. Challenges in accurately predicting strain abundances stem from variable recovery rates and weak correlations between expected and observed abundances^{18,21,27}.

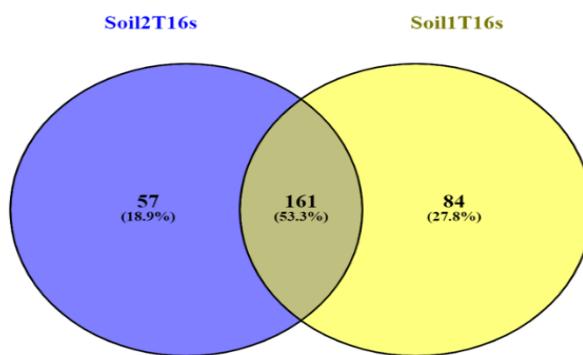
Operational Taxonomic Units in the samples: In this study, 604 operational taxonomic units (OTUs) were identified from both samples. Soil2T16s contributed 415 OTUs, while Soil1T16s contributed 489 OTUs.

Table 1
Physicochemical analysis of two different soil sample collected from different geography

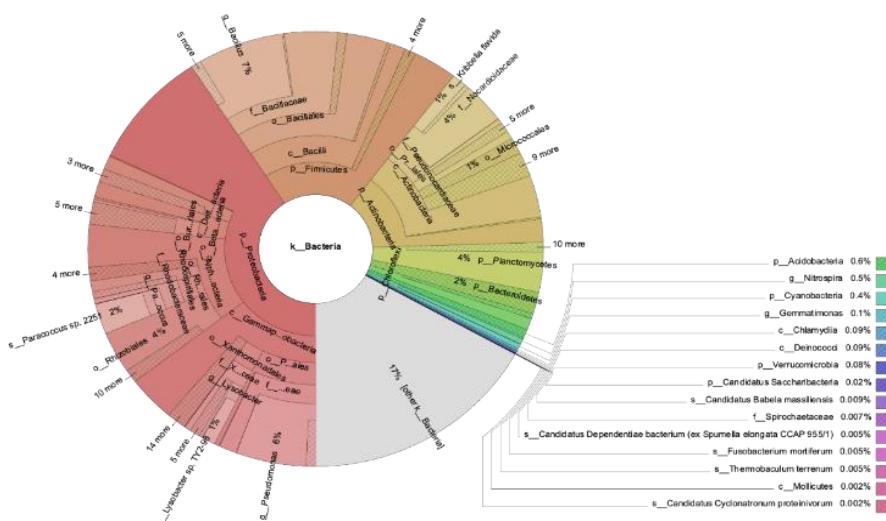
Parameters	Soil 1T 16s	Soil 2T 16s
Texture	Sandy Loam	Clay Soil
pH	7.3	6.8
Electrical Conductivity(EC)	0.9 dS/m	1.6 dS/m
Organic Matter (OM)	32.78 g/Kg	54.4 g/Kg
Total Nitrogen (T-N)	0.25%	0.32%
Available P ₂ O ₅ (Phosphorus pentoxide)	0.8 mg/Kg	0.9 mg/Kg
Potassium(K ⁺)	1.24 cmol/kg	1.1 cmol/kg

Table 2
Summary of sequencing and GS content of samples.

S.N.	Sample Name	No. of reads (in Million)	GC Content (%)
1	Soil1T16s	0.08M	57.5%
2	Soil2T16s	0.2M	57.5%


OTUs representing clusters of closely related sequences, are crucial in microbiome analysis for characterizing and comparing microbial communities. They form the basis for alpha and beta diversity measurements, taxonomic classification and functional profiling. In our study, the sample named Soil2T16s had 57 unique OTUs (18%) and Soil1T16s had 84 unique OTUs (27%). The samples shared 161 OTUs (55.3%), as illustrated in figure 1.

Taxonomy Assignment of OTUs: Taxonomical assignment is an important process understanding the datasets of microbiome. It first involved in filtering out the phylum non-assigned reads from the raw data, which is critical in maintaining the quality of the analysis. Using a third party plug-ins in QIIME 2 provided us the interactive tool for real time, multi taxonomical level-Krona plots. These plots are then saved in .html file and can be accessed again using any internet browser. Here, the tool provided an overview image of the interactive tool for the samples Soil2T16s (Figure 2a) and Soil1T16s (Figure 2b).


Taxonomy of Phylum: The diversity of phyla in soil samples, determined by 16S ribosomal RNA sequencing, reveals complex microbial communities. Actinobacteria dominated both samples, with Soil1T16s having 10,707

reads and Soil2T16s having 3,875 reads. Proteobacteria were dominant in Soil2T16s with 9,839 reads, while Soil1T16s had 5,126 reads, highlighting their role in organic matter decomposition and nutrient cycling in farmland^{6,8,13}. Firmicutes also showed significant presence, with 6,106 reads in Soil1T16s and 2,961 reads in Soil2T16s. Bacteroidetes had 371 reads in Soil1T16s and 5126 reads in Soil2T16s, while Cyanobacteria, contributing to soil fertility through nitrogen fixation, had 94 reads in Soil1T16s⁴. The metagenome analysis on the bacterial phylum abundance on reads highlighted the major presence of Actinobacteria in both the soil samples (Figures 3 and 4).

The Soil1T16s sample, collected from a tomato rhizosphere in the Gangetic delta and Soil2T16s, from 25 km away, exhibited variations in microbial community composition. This discrepancy could be due to environmental conditions or sampling methodologies, emphasizing the dynamic nature of soil microbial communities and their roles in soil health and ecosystem functioning. Additionally, studies on Actinobacteria in freshwater systems in Karimnagar, Andhra Pradesh, support the findings of their dominance near water sources, producing diverse compounds with biological activities¹¹.

Figure 1: Venn diagram on the OTUs distribution in the samples

Figure 2a: Krona plot of sample Soil2T16s

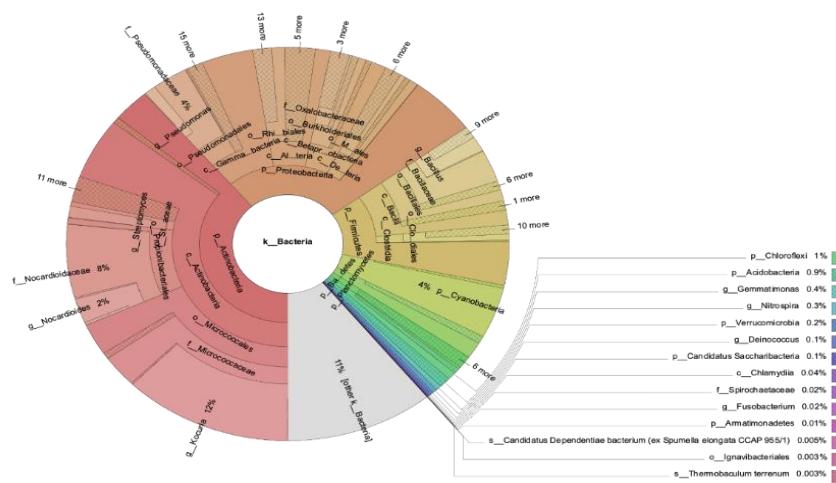


Figure 2b: Krona plot of sample Soil1T16s

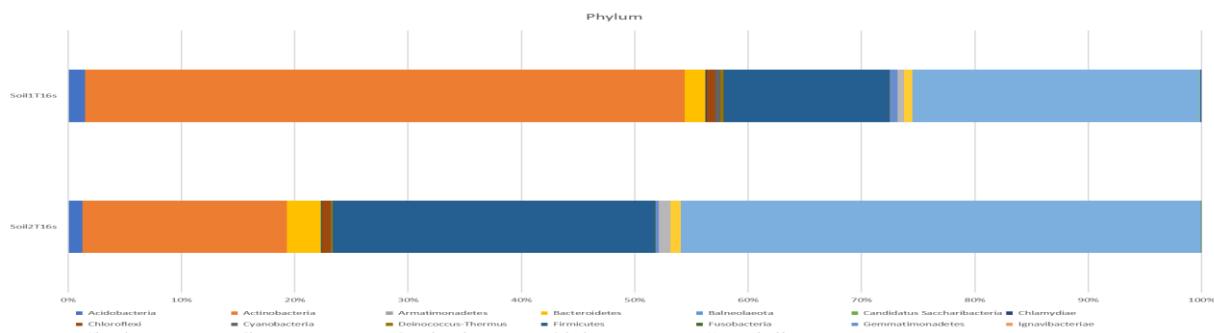


Figure 3: Taxonomy of Phylum between the samples

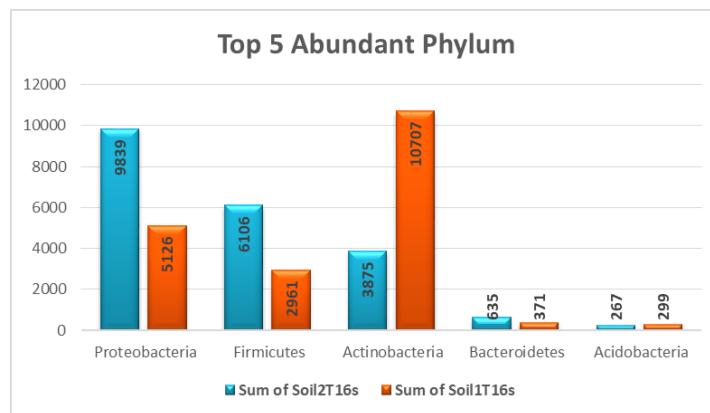


Figure 4: Comparative chart for top five abundant phylum present in Soil1T16s and Soil2T16s

These findings underscore the significant presence of Actinobacteria and Firmicutes in both soil samples indicating their crucial roles in soil ecosystems. The higher presence of Proteobacteria in Soil2T16s highlights their importance in areas away from water bodies³². The study also detected smaller numbers of other phyla like Bacteroidetes and Cyanobacteria, suggesting their specialized roles in soil fertility and stabilization. Lesser-known phyla such as Armatimonadetes and Balaenolaeota were minimally present, pointing to their rarity in soil environments.

This discrepancy suggests variations in microbial community composition between the two soil samples,

which could be attributed to differences in environmental conditions or sampling methodologies. In our study, the Soil1T16s was collected from tomato rhizosphere in the gangetic delta and Soil2T16s was collected 25 Km far from the delta region of same tomato rhizosphere region. This underscores their importance in soil ecosystems and suggests their influential roles in organic matter decomposition and nutrient cycling processes.

Taxonomy of Class: In comparing the bacterial classes in Soil2T16s and Soil1T16s, notable differences in abundance were observed. A total of six distinct bacterial classes were identified: Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Deltaproteobacteria and

Gammaproteobacteria. In Soil1T16s, Actinobacteria was the most abundant class, with a read count of 10,548, highlighting its dominance in the soil rhizosphere near the water source⁴⁴. Soil2T16s showed a higher abundance of Alphaproteobacteria (3,884) compared to Soil1T16s (1,627) and also had a higher count of Bacilli (5,792) compared to Soil1T16s (2,498) as shown in fig. 4.

Alphaproteobacteria, including species like *Pelagibacter* *ubique* and *Rhodobacter sphaeroides*, are known for their metabolic versatility and importance in various environmental processes^{3,9,43}. *Bacilli* are prevalent in soil and are known for producing valuable antibiotics³⁶ as in figures 5 and 6. *Soil1T16s* had a higher abundance of *Chloroflexia* (37) compared to *Soil2T16s* (9) and *Soil2T16s* had a higher count of *Gammaproteobacteria* (4,729) compared to *Soil1T16s* (1,788).

Additionally, Soil1T16s had more Rubrobacteria (105) than Soil2T16s (15). Gammaproteobacteria are diverse and play significant roles in organic carbon turnover and nitrogen and sulfur cycling in hydrothermal sediments^{25,45}. These bacteria are selected based on ecophysiological and growth differences influenced by the geochemical profiles at various vent sites. Their metabolic diversity and adaptation are crucial for maintaining biogeochemical cycles in various environments, including polluted areas⁴².

The differences in microbial community composition between Soil2T16s and Soil1T16s can be attributed to variations in environmental conditions and pollution levels, with Soil2T16s, located farther from the delta, showing higher abundance of certain bacterial classes due to these factors.

Figure 5: Taxonomy of Class between the samples

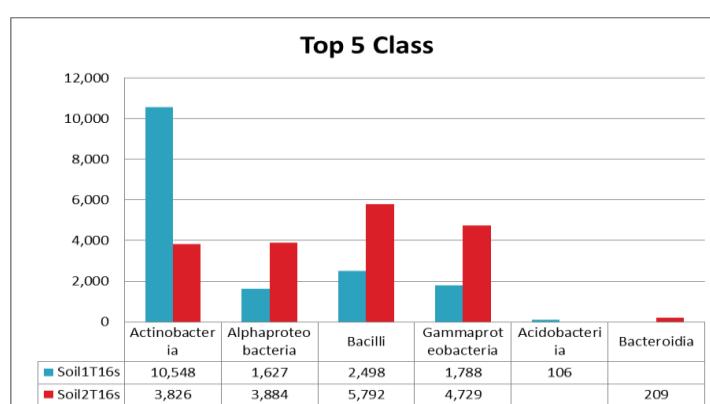
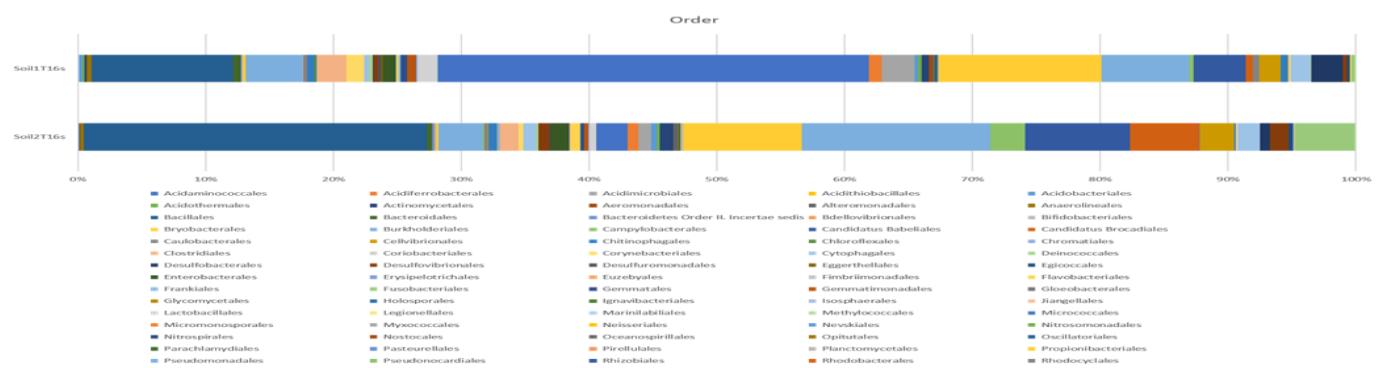



Figure 6: Comparative chart for top five abundant Class present in Soil1T16s and Soil2T16

Figure 7: Taxonomy of Order between the samples

Taxonomy of Order: In comparing the abundance of different bacterial orders in Soil2T16s and Soil1T16s, significant variations are observed in the distribution of various orders between the two soil samples. Soil1T16s is dominated by the order Micrococcales, with a staggering 6,761 reads, followed by Burkholderiales (899 reads), Enterobacterales (205 reads), Propionibacterales (2,556 reads) and Pseudomonadales (1,371 reads). In contrast, Soil2T16s exhibits a different pattern, with Bacillales being the most abundant order, comprising of 5,691 reads. Other dominant orders in Soil2T16s include Burkholderiales (727 reads), Pseudomonadales (3,125 reads), Rhizobiales (1,743 reads) and Rhodobacterales (1,147 reads) as mentioned in figure 7. These stark differences in the relative abundances of bacterial orders between the two soil samples suggest distinct microbial compositions, potentially driven by variations in environmental factors such as soil properties, vegetation, or land use practices.

The core microbiome analysis of *Cistanche deserticola* soil communities revealed a predominance of bacteria with traits like drought, salt tolerance, alkali resistance and stress resistance, particularly Micrococcales. This order is also prominent in our sample Soil2T16S, which is typical of farm soil with less water and drought conditions. Advanced techniques such as LEfSe and random forest analysis identified specific biomarkers that distinguish microbial communities in different ecotypes: Oceanospirillales in saline-alkali land, Sphingomonadales in grassland and Propionibacterales in sandy land.

A positive correlation was found between the plant metabolite 2'-acetylacteoside and the abundance of Oceanospirillales in saline-alkali soil. The metabolic function profiles of these communities highlighted enriched pathways in carbohydrate and amino acid metabolism, as well as environmental information processing related to membrane transport and signal transduction. These findings highlight the adaptive strategies and functional roles of microbial communities in supporting the growth and resilience of *C. deserticola* in diverse ecological niches³⁵.

Taxonomy of Family: The comparison between Soil2T16s and Soil1T16s reveals significant differences in the

composition of bacterial families (Figure 8). While both samples share some common families such as Bacillaceae, Pseudomonadaceae and Streptomycetaceae, Soil2T16s has a higher abundance of families like Nocardioidaceae, Micrococcaceae and Vicinamibacteraceae. In contrast, Soil1T16s has a higher abundance of families like Enterobacteriaceae, Enterococcaceae and Lactobacillaceae. In Soil2T16s, the top five abundant families are Bacillaceae with 4169 sequences, followed by Pseudomonadaceae (2974), Nocardioidaceae (1801), Rhodobacteraceae (1144) and Xanthomonadaceae (995). In contrast, Soil1T16s exhibits Micrococcaceae as the most abundant family with 5603 sequences, followed by Nocardioidaceae (2363), Oxalobacteraceae (593), Streptomycetaceae (493) and Bacillaceae (1601).

These differences may be attributed to variations in environmental conditions, soil properties and vegetation types between the two samples. The higher abundance of Nocardioidaceae and Micrococcaceae in Soil2T16s may indicate a greater presence of drought-tolerant and alkali-resistant bacteria, while the higher abundance of Enterobacteriaceae and Enterococcaceae in Soil1T16s may indicate a greater presence of bacteria adapted to more humid and nutrient-rich environments. Overall, the comparison highlights the unique microbial communities present in each soil sample and underscores the importance of considering environmental factors when interpreting microbial community composition.

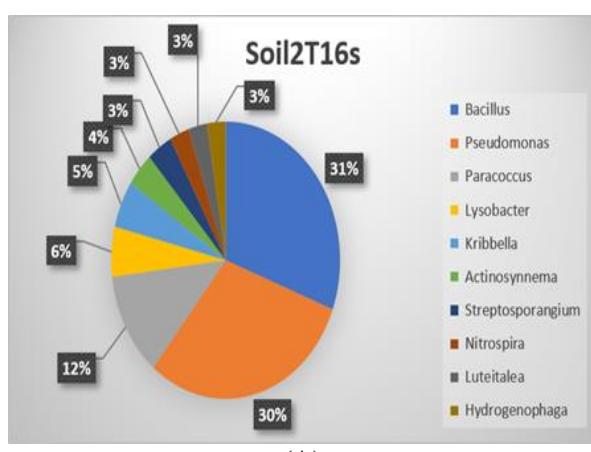
Bacillaceae family are seen dominant in Soil2T16s, which was collected from regular cultivation region away from the gangetic flooding. The members of the family Bacillaceae are known for their robustness, attributed to their ability to form resistant endospores. This trait plays a crucial role in shaping the ecology of these bacteria. Bacillaceae members are dominant in various environments including soil where they contribute significantly to soil ecology by cycling organic matter. Additionally, they play essential roles in promoting plant health and growth by suppressing plant pathogens and aiding in phosphate solubilization. These bacteria are pivotal in maintaining ecosystem balance and supporting plant vitality through their diverse ecological functions²⁴.

Figure 8: Taxonomy of Family between the samples

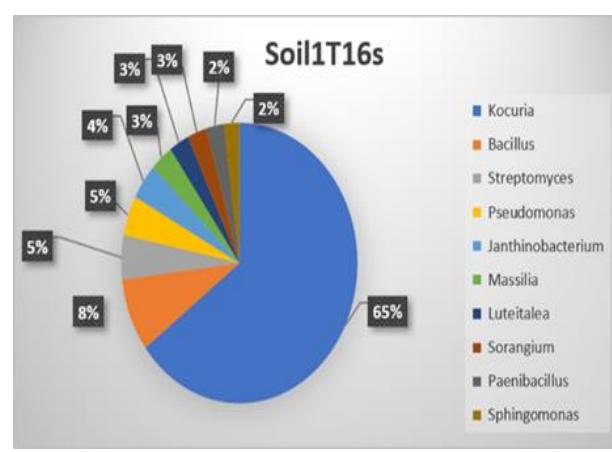
The family Micrococcaceae, abundant in Soil1T16s from a flood-prone area near the Ganga River, significantly enhances soil microorganisms by metabolizing rhizospheric organic acids (OAs) such as lactic, oxalic and citric acids, serving as crucial carbon and energy sources. This biostimulation is evidenced by increased enzymatic activities like dehydrogenase and phosphatase, with lactic and citric acids showing the most pronounced effects. These OAs alter soil microbial community structures, promoting genera like Micrococcaceae and facilitating the persistence of plant growth-promoting bacteria (PGPB) such as Pseudomonadaceae. Citric acid also supports Clostridiaceae in addition to Micrococcaceae. These insights underscore the potential of rhizospheric OAs as sustainable biostimulants to enhance crop productivity by fostering beneficial microbial growth, particularly Micrococcaceae²³.

Taxonomy of Genus between samples: In the comparison between the two soil samples, Soil2T16s and Soil1T16s, the genus with the highest number of reads varies between the samples. In Soil2T16s, the genus *Actinosynnema* stands out with 318 counts, indicating its dominance in this sample. On the other hand, in Soil1T16s, the genus *Kocuria* takes the lead with a significant count of 4584, showcasing its prevalence in this particular sample. These highest read counts for *Actinosynnema* in Soil2T16s and *Kocuria* in Soil1T16s highlight the distinct microbial compositions and abundance patterns present in each soil sample, emphasizing the diversity and variability of soil microbiota across different environments. Notably, the genus *Bacillus* shows a substantial difference, with 2481 counts in Soil2T16s compared to 599 counts in Soil1T16s. This indicates a higher prevalence of *Bacillus* in Soil2T16s.

Similarly, the genus *Lysobacter* exhibits a notable difference, with 469 counts in Soil2T16s and only 19 counts in Soil1T16s, suggesting a much higher abundance in Soil2T16s. The comparison also highlights variations in other genera such as *Clostridium*, which shows 106 counts in Soil1T16s and 9 counts in Soil2T16s, indicating a higher presence in Soil1T16s. Additionally, *Streptomyces* displays a substantial difference, with 360 counts in Soil1T16s and

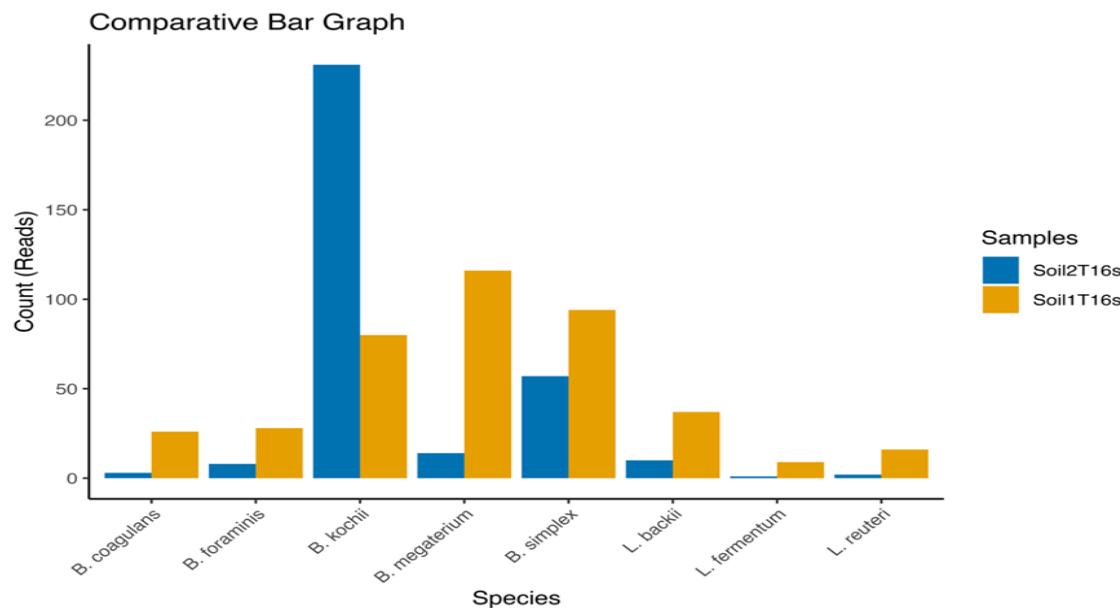

99 counts in Soil2T16s, suggesting a higher abundance in Soil1T16s (Figures 9A and 9B).

In a study by Li et al¹⁹, the inoculation of *Kocuria* Y1, a plant growth-promoting bacterium (PGPB), significantly enhanced maize growth and improved tolerance to salt stress. This was achieved through enhanced nutrient acquisition, improved redox potential, ion homeostasis and increased photosynthetic capacity. Furthermore, *Kocuria* Y1 was found to reduce abscisic acid (ABA) levels and increase indole-3-acetic acid (IAA) content in corn plants subjected to NaCl stress conditions.


Meanwhile, *Bacillus*, prominently present in Soil1T16S, is recognized for its capability to produce various beneficial substances for plant growth including gibberellins, indole-3-acetic acid (IAA) and enzymes that solubilize nutrients. These substances play crucial roles in promoting rapid plant growth, particularly in stressful environments where physiological changes can otherwise slow down plant senescence. Moreover, *Bacillus* species produce secondary metabolites such as antibiotics, siderophores and cell wall hydrolases, which confer antagonistic effects against plant pathogens and enhance systemic resistance.

These findings underscore the significant roles of *Kocuria* and *Bacillus* in enhancing plant health and resilience, highlighting their potential applications in agriculture. The effectiveness of these bacteria is influenced by soil characteristics and the genetic traits of plants, emphasizing the intricate relationships within soil microbiomes and their impact on agricultural sustainability²².

Taxonomy of Species: In our study, the comparison between the two soil samples, Soil2T16s and Soil1T16s, the species diversity was not plotted because many of the species were identified upto genus level only. In spite of this technicalities, only a small portion of reads pertaining to *Bacillus* genus was identified into species like *Bacillus kochii*, *Bacillus simplex*, *Bacillus megaterium*, *Bacillus foraminis*, *Bacillus coagulans* and *Bacillus amyloliquefaciens*.



(A)

(B)

Figure 9 (A) and (B): Top ten genus found in Soil2T16s (A) and Soil1T16s (B) (In term of %)

Figure 10: Comparative distribution of identified species belonging to *Bacillus* and *Lactobacillus* spp. between the samples

There were also some *Paenibacillus antarcticus*, *Paenibacillus mucilaginosus*, *Paenibacillus baekrokdamisoli* and *Paenibacillus* sp. *Cedars*. in small numbers. From the genus *Lactobacillus*, there were species like *Lactobacillus backii*, *Lactobacillus reuteri* and *Lactobacillus fermentum*. We cannot compare the species level to conclude because 2168 reads of unknown bacteria were documented in Soil2T16s the highest in *Bacillus* genus, likewise only 240 reads were there for that same OTU in sample Soil1T16s, but the species level is not known. In Soil2T16s, the counts of various bacterial species are as follows: *Bacillus kochii* had 231 counts, *Bacillus simplex* had 57 counts, *Bacillus megaterium* had 14 counts, *Bacillus foraminis* had 8 counts, *Bacillus coagulans* had 3 counts, *Lactobacillus backii* had 10 counts, *Lactobacillus reuteri* had 2 counts and *Lactobacillus fermentum* had 1 count (Figure 10).

Other PGPRs namely *Paenibacillus antarcticus*, *Paenibacillus mucilaginosus*, *Paenibacillus baekrokdamisoli* and *Paenibacillus* sp. *Cedars* were the species found in the genus *Paenibacillus* in less read counts less than 10. They can promote the growth of the crop directly through fixation of biological nitrogen, phosphate solubilization, synthesis of phytohormone namely indole-3-acetic acid (IAA) and siderophores synthesis that enable iron acquisition into the crops. They help the crops in protection against insect herbivores and phytopathogens including bacteria, fungi, nematodes and viruses¹⁰. *Lactobacillus backii* and other species of *Lactobacillus* are involved in lactic acid degradation. These bacteria have the ability to metabolise lactic acid and other substrate and produce vitamins, hormones and other secondary metabolites. They also produce various plant growth promoting traits viz. antifungal activity, production of plant growth hormones, enzymes and 1-amino cyclopropane carboxylate deaminase

activity¹. Likewise, the *Bacillus* spp. are also known for their PGPR activities for instance *Bacillus amyloliquefaciens*⁵, *Bacillus kochii*⁴¹, *Bacillus simplex*³⁰ and *Bacillus megaterium*³⁸. These bacteria in soil help the soil to provide PGPR and secondary metabolites to protect the plants from pathogen attacks.

Conclusion

In conclusion, our study investigated the microbial composition of Soil1T16s and Soil2T16s, highlighting distinct taxonomic patterns shaped by proximity to water sources. Soil1T16s, located nearer to water, exhibited a predominance of Proteobacteria and Firmicutes, indicative of conditions favoring higher moisture and nutrient availability. In contrast, Soil2T16s, situated further from water, showed a dominance of Actinobacteria, suggesting adaptation to drier environments.

Despite limitations in species-level classification due to database constraints, both samples contained plant growth-promoting rhizobacteria (PGPRs), with *Bacillus* species notably more abundant in Soil2T16s. These findings underscore the influence of environmental factors on microbial community structure, highlighting potential implications for agricultural and ecological management strategies.

Acknowledgement

We are very much thankful to Department of Botany, Patna University and Centyle Biotech for the support extended in doing the molecular work.

References

1. Abhyankar P.S., Gunjal A.B., Kapadnis B.P. and Ambade S.V., Potential of lactic acid bacteria in plant growth

promotion, *Bhartiya Krishi Anusandhan Patrika*, **36**(4), 326-329 (2021)

2. Behzad H., Gojobori T. and Mineta K., Challenges and opportunities of airborne metagenomics, *Genome Biology and Evolution*, **7**(5), 1216-1226 (2015)

3. Calvano C.D., Italiano F., Catucci L., Agostiano A., Cataldi T.R., Palmisano F. and Trotta M., The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress, *Biometals*, **27**, 65-73 (2014)

4. Chamizo S., Mugnai G., Rossi F., Certini G. and De Philippis R., Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration, *Frontiers in Environmental Science*, **6**, 49 (2018)

5. Chowdhury S.P., Hartmann A., Gao X. and Borriss R., Biocontrol mechanism by root-associated *Bacillus amyloliquefaciens* FZB42-a review, *Frontiers in Microbiology*, **6**, doi: 10.3389/fmicb.2015.00780 (2015)

6. Cobaugh K.L., Schaeffer S.M. and De Bruyn J.M., Functional and structural succession of soil microbial communities below decomposing human cadavers, *PLoS One*, **10**(6), e0130201 (2015)

7. Daniel R., The metagenomics of soil, *Nature Reviews Microbiology*, **3**(6), 470-478 (2005)

8. Finley S.J., Pechal J.L., Benbow M.E., Robertson B.K. and Javan G.T., Microbial signatures of cadaver gravesoil during decomposition, *Microbial Ecology*, **71**, 524-529 (2016)

9. Giovannoni S.J., SAR11 bacteria: the most abundant plankton in the oceans, *Annual Review of Marine Science*, **9**, 231-255 (2017)

10. Grady E.N., MacDonald J., Liu L., Richman A. and Yuan Z.C., Current knowledge and perspectives of Paenibacillus: a review, *Microbial Cell Factories*, **15**, 1-18 (2016)

11. Gunda M.M. and Singaracharya M.A., Molecular characterization of fresh water actinobacteria using 16S rRNA based technique, *Int J Pharm Bio Sci*, **3**, 494-505 (2012)

12. Handelsman J., Rondon M.R., Brady S.F., Clardy J. and Goodman R.M., Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, *Chemistry & Biology*, **5**(10), R245-R249 (1998)

13. Hilal M.G., Yu Q., Zhou R., Wang Y., Feng T., Li X. and Li H., Exploring microbial communities, assessment methodologies and applications of animal's carcass decomposition: a review, *FEMS Microbiology Ecology*, **97**(8), fiab098 (2021)

14. Jackson M.L., Soil Chemical Analysis, Prentice-Hall of India Pvt. Ltd., New Delhi, 498 (1967)

15. Janda J.M. and Abbott S.L., 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils and pitfalls, *Journal of Clinical Microbiology*, **45**(9), 2761-2764 (2007)

16. Jansson J.K. and Hofmockel K.S., The soil microbiome—from metagenomics to metagenomics, *Current Opinion in Microbiology*, **43**, 162-168 (2018)

17. Kutty S.N., Paul T. and Devasia S.C., Comparison of culturable and non-culturable bacterial diversity through metagenomic sequencing from the mangrove sediments in Kannur district, Kerala, India, *Ecological Genetics and Genomics*, **27**, 100175 (2023)

18. Laursen M.F., Dalgaard M.D. and Bahl M.I., Genomic GC-content affects the accuracy of 16S rRNA gene sequencing based microbial profiling due to PCR bias, *Frontiers in Microbiology*, **8**, 287367 (2017)

19. Li X., Sun P., Zhang Y., Jin C. and Guan C., A novel PGPR strain *Kocuria rhizophila* Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression, *Environmental and Experimental Botany*, **174**, 104023 (2020)

20. Lin X. et al, The genomic landscape of reference genomes of cultivated human gut bacteria, *Nature Communications*, **14**(1), 1663 (2023)

21. Love C.J., Gubert C., Kodikara S., Kong G., Lê Cao K.A. and Hannan A.J., Microbiota DNA isolation, 16S rRNA amplicon sequencing and bioinformatic analysis for bacterial microbiome profiling of rodent fecal samples, *STAR Protocols*, **3**(4), 101772 (2022)

22. Lu P. et al, Profiles of *Bacillus* spp. Isolated from the rhizosphere of *Suaeda glauca* and their potential to promote plant growth and suppress fungal phytopathogens, *Journal of Microbiology and Biotechnology*, **31**(9), 1231 (2021)

23. Macias-Benitez S., Garcia-Martinez A.M., Caballero Jimenez P., Gonzalez J.M., Tejada Moral M. and Parrado Rubio J., Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties, *Frontiers in Plant Science*, **11**, 633 (2020)

24. Mandic-Mulec I., Stefanic P. and van Elsas J.D., Ecology of bacillaceae, The bacterial spore: From molecules to systems, 59-85 (2016)

25. Niepceron M. et al, GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils, *Environmental Pollution*, **180**, 199-205 (2013)

26. Patil B.L., Narayan K.S. and Gopalkrishna A.M., Diversity profiling of seed associated endophytic microbiome in important species of Caricaceae family, *Microbiology Research*, **12**(4), 779-792 (2021)

27. Qin Y. et al, Effects of error, chimera, bias and GC content on the accuracy of amplicon sequencing, *Msystems*, **8**(6), e01025-23 (2023)

28. Rasheed M.M.B. et al, Metagenomic Analysis of Human Gut Microbiota, *Journal of Pharmaceutical Negative Results*, **14**(4), 651-670 (2023)

29. Schmeisser C., Steele H. and Streit W.R., Metagenomics, biotechnology with non-culturable microbes, *Applied Microbiology and Biotechnology*, **75**, 955-962 (2007)

30. Schwartz A.R. et al, *Bacillus simplex*—a little known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with *Rhizobium leguminosarum* bv. *viciae*, *Agronomy*, **3**(4), 595-620 (2013)

31. Sharmin F., Wakelin S., Huygens F. and Hargreaves M., Firmicutes dominate the bacterial taxa within sugar-cane processing plants, *Scientific Reports*, **3**(1), 3107 (2013)

32. Staley C. and Sadowsky M.J., Application of metagenomics to assess microbial communities in water and other environmental matrices, *Journal of the Marine Biological Association of the United Kingdom*, **96**(1), 121-129 (2016)

33. Stanford J.A., Lorang M.S. and Hauer F.R., The shifting habitat mosaic of river ecosystems, *SIL Proceedings*, 1922-2010, **29**(1), 123–136 (2005)

34. Subbiah B.V. and Asija G.L., A Rapid Procedure for the Estimation of Available Nitrogen in Soils, *Current Science*, **25**, 259-260 (1956)

35. Sun X., Zhang L., Pei J. and Huang L.F., Regulatory relationship between quality variation and environment of *Cistanche deserticola* in three ecotypes based on soil microbiome analysis, *Scientific Reports*, **10**(1), 6662 (2020)

36. Tabbene O., Ben Slimene I., Bouabdallah F., Mangoni M.L., Urdaci M.C. and Limam F., Production of anti-methicillin-resistant *Staphylococcus* activity from *Bacillus subtilis* sp. strain B38 newly isolated from soil, *Applied Biochemistry and Biotechnology*, **157**, 407-419 (2009)

37. Tringe S.G. and Rubin E.M., Metagenomics: DNA sequencing of environmental samples, *Nature Reviews Genetics*, **6**(11), 805-814 (2005)

38. Vary P.S., Biedendieck R., Fuerch T., Meinhardt F., Rohde M., Deckwer W.D. and Jahn D., *Bacillus megaterium*—from simple soil bacterium to industrial protein production host, *Applied Microbiology and Biotechnology*, **76**, 957-967 (2007)

39. Walkley A.J. and Black I.A., Estimation of soil organic carbon by the chromic acid titration method, *Soil Sci.*, **37**, 29-38 (1934)

40. Woese C.R., Kandler O. and Wheelis M.L., Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya, *Proceedings of the National Academy of Sciences*, **87**(12), 4576-4579 (1990)

41. Wu X. et al, Function-driven design of *Bacillus kochii* and *Filobasidium magnum* co-culture to improve quality of flue-cured tobacco, *Frontiers in Microbiology*, **13**, 1024005 (2023)

42. Yamamoto M. and Takai K., Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields, *Frontiers in Microbiology*, **2**, 192 (2011)

43. Yurkov V. and Csotonyi J.T., New light on aerobic anoxygenic phototrophs, In *The purple phototrophic bacteria*, Dordrecht, Springer, Netherlands, 31-55 (2009)

44. Zhang B. et al, Variation in actinobacterial community composition and potential function in different soil ecosystems belonging to the arid Heihe River Basin of Northwest China, *Frontiers in Microbiology*, **10**, 2209 (2019)

45. Zhang Q., Zhang Z., Lu T., Yu Y., Penuelas J., Zhu Y.G. and Qian H., Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants, *Microbiome*, **9**, 1-17 (2021).

(Received 16th July 2024, accepted 20th September 2024)