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Abstract

Bacterial communities in soil ecosystems play pivotal
roles in nutrient cycling, organic matter decomposition
and maintaining soil fertility, critical for sustaining
agricultural productivity. This study explores the
microbial diversity and community dynamics in
rhizospheric soils of tomato plants from riparian and
non-riparian zones in Bihar, India, leveraging next-
generation  sequencing (NGS)  metagenomics.
Physicochemical analyses revealed significant
differences in soil properties between the two sites,
influenced by their proximity to the Ganga River
floodplain. Metagenomic analysis using the V3-V4
region of the 16S rRNA gene identified distinct
microbial compositions and abundances in Soil1T16s
(riparian) and Soil2T16s (non-riparian).
Actinobacteria dominated both samples, with
Proteobacteria and Firmicutes showing varying
abundances. Taxonomic assignments highlighted
specific bacterial classes, orders, families, genera and
some species unique to each sample, indicating
environmental adaptation and functional diversity.

Notably, SoillT16s exhibited higher diversity and
unique taxa potentially influenced by floodplain
deposits, while Soil2T16s showed adaptations to drier
conditions away from the river. This research
underscores the ecological importance of microbial
communities in agricultural soils and provides insights
into their roles in ecosystem functioning and resilience.

Keywords: Metagenomics, Riparian Ecosystem, Tomato,
Rhizosphere, NGS.

Introduction

Bacterial communities are vital for ecosystem functioning,
contributing to numerous ecological processes. They
decompose organic matter, recycle nutrients and maintain
soil structure and fertility. Bacteria play key roles in
nitrogen, carbon and nutrient cycling, which are essential for
plant and organism growth. Found in diverse habitats like
soil, water and living organisms, bacteria aid in nutrient
release through organic matter decomposition. They also
engage in plant-microbe interactions in various rhizosphere
of different plants. Tomato (Solanum lycopersicum) is an
important vegetable cultivated near the riparian zones of the
Gangetic plain in Bihar, benefiting from favourable climatic
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conditions. The soil in this area is highly fertile, enriched
annually by the floodplain deposits of the Ganga River,
which also promote a diverse bacterial population, further
enhancing soil fertility.

The floodplain is also known as riparian ecosystem which
serves as an ecotone between aquatic and terrestrial
environments, influenced by factors such as turbulence,
resource availability and the edge effects associated with
emergent ecotones®®. Next-generation sequencing (NGS)
tools, particularly metagenomics, offer valuable insights into
the bacterial structure and community dynamics of
Soil2T16s and SoillT16s. This culture-independent
approach has revolutionized our ability to explore bacterial
diversity, not just identifying their presence but also
determining  their ~ dominance  within  microbial
populations*?37. Metagenomics has been widely applied
across diverse ecosystems, from the human gut
microbiome?®?° to soil ecosystems’'®, water bodies®?, air
environments? and plant materials?®.

The NGS metagenomics technique excels in identifying and
characterizing microbial structures including non-culturable
microbes residing in various environmentst’. This high-
throughput sequencing technology allows comprehensive
exploration of genetic diversity, functional potential and
ecological roles of microbial communities without the
limitations of traditional culturing methods. It enhances our
understanding of microbial ecosystems by highlighting their
intricate interactions, ecological functions and responses to
environmental changes!”262°,  Sequencing efforts in
metagenomics focus on phylogenetic classification at the
genus or species level across diverse microbial
populations®®49,

Through metagenomic analysis, we aim to elucidate the
microbial compositions and ecological dynamics of
Soil2T16s and Soil1T16s. By leveraging metagenomics, we
seek novel insights into the structural attributes of these
bacterial communities, advancing our understanding of soil
microbial ecology and its broader implications for
ecosystem health and sustainability.

Material and Methods

Selection of site and Sample collection: Two sites were
selected to study bacterial biodiversity in rhizospheric soils
of tomato plants, comparing riparian and non-riparian
conditions. The first site was the rhizospheric soil of tomato
plants from the riparian zone of the Ganga River at LCT
Ghat, Patna, Bihar (25.6296° N, 85.1175° E) and the second
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site was from non-riparian soil in Chandpura village,
Hajipur, Bihar (25.5387° N, 85.3420° E). Tomato plants
were uprooted and soil clinging to the roots was collected as
rhizosphere soil. Samples from each site were homogenized,
combined and 10g of soil was stored at 4°C for metagenomic
analysis.

Physicochemical analysis of Soil Sample: The
physicochemical analysis of soil samples included
measuring pH with a glass electrode pH meter (1:2.5 soil-to-
water ratio) and electrical conductivity (EC) using an EC
meter (1:2.5 soil-to-water suspension). Organic carbon was
determined by the wet oxidation method®®. Awvailable
nitrogen was estimated using the modified Kjeldahl
method34. Available phosphorus was quantified following
Jackson's method'* and available potassium was measured
by extracting it with 1IN NH4OAc and analyzing with a flame
photometer4,

Metagenomic Approach for analysis of Culture-
Independent Bacterial Diversity: The methodology was
used for investigating the bacterial structure and community
dynamics between Soil2T16s and SoillT 16s samples. The
main steps involved in this metagenomic process are: DNA
extraction using DNA Power Soil Kit, then 16sF:- 5’
AGAGTTTGATGMTGGCTCAG3” and 16sR:- 5’
TTACCGCGGCMGCSGGCAC3’ universal primers were
used for PCR amplification of the VV3-V4 region of the 16S
gene with the mentioned primers and standard conditions.
40ng of extracted DNA was used for amplification along
with 10pM of each primer.

Initial PCR steps involving denaturation are: 95 °C, 25
cycles of the following condition: denaturation at 95°C for
15 sec, annealing @ 60°C for 15 sec, elongation at 72°C for
2 mins, final extension at 72°C for 10 mins and hold at 4°C.
The amplicons from each sample were purified with Ampure
beads to remove unused primers and additional 8 cycles of
PCR were performed using Illumina barcoded adapters to
prepare the sequencing libraries.
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Bioinformatics protocol: Libraries were purified using
Ampure beads and quantitated using Qubit dsDNA High
Sensitivity assay kit. Sequencing was performed using
lllumina Miseq with 2 x 300PE v3 sequencing Kit.
Bioinformatics analysis included quality control, trimming,
merging and taxonomic classification using QIIME,
workflows and databases used was SILVA. This process
enabled the identification of diverse bacteria and
understanding of microbial community composition at
different taxonomy level, facilitating insights into soil
microbial ecology and ecosystem dynamics of our two
samples namely Soil2T16s and Soil1T16s.

Results and Discussion

Physicochemical analysis of Soil Sample:
Physicochemical properties of collected soil from two
different locations were analyzed by various stranded
parameter mentioned in table 1.

Raw data sequencing QC summary of the samples: The
metagenomic analysis compared Soil1T16s and Soil2T16s
based on the VV3-V4 amplicon region, revealing 0.08 million
reads in Soil1T16s with a 57.5% GC content and 0.2 million
reads in Soil2T16s with a similar GC concentration as in
table 2. These findings suggest differences in microbial
diversity or community structure between the samples,
despite their comparable GC content indicating similar
proportions of GC-rich bacterial genomes.

GC content influences chimeric sequence generation rates
and sequence recovery efficiency, with GC-rich sequences
recovering more effectively. Challenges in accurately
predicting strain abundances stem from variable recovery
rates and weak correlations between expected and observed
abundances®®2%27,

Operational Taxonomic Units in the samples: In this
study, 604 operational taxonomic units (OTUs) were
identified from both samples. Soil2T16s contributed 415
OTUs, while Soil1T16s contributed 489 OTUs.

Table 1
Physicochemical analysis of two different soil sample collected from different geography
Parameters Soil 1T 16s Soil 2T 16s
Texture Sandy Loam Clay Soil
pH 7.3 6.8
Electrical Conductivity(EC) 0.9 dS/m 1.6 dS/m
Organic Matter (OM) 32.78 g/Kg 54.4 g/Kg
Total Nitrogen (T-N) 0.25% 0.32%
Available P,Os(Phosphorus pentoxide) 0.8 mg/Kg 0.9 mg/Kg
Potassium(K*) 1.24 cmolc/kg 1.1 cmolc/kg
Table 2
Summary of sequencing and GS content of samples.
S.N. Sample Name No. of reads (in Million) GC Content (%)
1 Soil1T16s 0.08M 57.5%
2 Soil2T16s 0.2M 57.5%
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OTUs representing clusters of closely related sequences, are
crucial in microbiome analysis for characterizing and
comparing microbial communities. They form the basis for
alpha and beta diversity measurements, taxonomic
classification and functional profiling. In our study, the
sample named Soil2T16s had 57 unique OTUs (18%) and
S0il1T16s had 84 unique OTUs (27%). The samples shared
161 OTUs (55.3%), as illustrated in figure 1.

Taxonomy Assignment of OTUs: Taxonomical assignment
is an important process understanding the datasets of
microbiome. It first involved in filtering out the phylum non-
assigned reads from the raw data, which is critical in
maintaining the quality of the analysis. Using a third party
plug-ins in QIIME 2 provided us the interactive tool for real
time, multi taxonomical level-Krona plots. These plots are
then saved in .html file and can be accessed again using any
internet browser. Here, the tool provided an overview image
of the interactive tool for the samples Soil2T16s (Figure 2a)
and Soil1T16s (Figure 2b).

Taxonomy of Phylum: The diversity of phyla in soil
samples, determined by 16S ribosomal RNA sequencing,
reveals complex microbial communities. Actinobacteria
dominated both samples, with Soil1T16s having 10,707

Soil2T16s
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reads and Soil2T16s having 3,875 reads. Proteobacteria
were dominant in Soil2T16s with 9,839 reads, while
Soil1T16s had 5,126 reads, highlighting their role in organic
matter decomposition and nutrient cycling in farmland®213,
Firmicutes also showed significant presence, with 6,106
reads in SoillT16s and 2,961 reads in Soil2T16s.
Bacteroidetes had 371 reads in Soil1T16s and 5126 reads in
Soil2T16s, while Cyanobacteria, contributing to soil fertility
through nitrogen fixation, had 94 reads in Soil1T16s*The
metagenome analysis on the bacterial phylum abundance on
reads highlighted the major presence of Actinobacteria in
both the soil samples (Figures 3 and 4).

The Soil1T16s sample, collected from a tomato rhizosphere
in the Gangetic delta and Soil2T16s, from 25 km away,
exhibited variations in microbial community composition.
This discrepancy could be due to environmental conditions
or sampling methodologies, emphasizing the dynamic nature
of soil microbial communities and their roles in soil health
and ecosystem functioning. Additionally, studies on
Actinobacteria in freshwater systems in Karimnagar, Andhra
Pradesh, support the findings of their dominance near water
sources, producing diverse compounds with biological
activitiest?.

SeillT16s

84
(27.8%)

Figure 1: Venn diagram on the OTUs distribution in the samples
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' Figure 2a: Krona plot of sample Soil2T16s
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Figure 2b: Krona plot of sample Soil1T16s
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Figure 4: Comparative chart for top five abundant phylum present in Soil1T16s and Soil2T16s

These findings underscore the significant presence of
Actinobacteria and Firmicutes in both soil samples
indicating their crucial roles in soil ecosystems. The higher
presence of Proteobacteria in Soil2T16s highlights their
importance in areas away from water bodies®?. The study
also detected smaller numbers of other phyla like
Bacteroidetes and Cyanobacteria, suggesting their
specialized roles in soil fertility and stabilization. Lesser-
known phyla such as Armatimonadetes and Balneolaeota
were minimally present, pointing to their rarity in soil
environments.

This discrepancy suggests variations in  microbial
community composition between the two soil samples,
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which could be attributed to differences in environmental
conditions or sampling methodologies. In our study, the
SoillT16s was collected from tomato rhizosphere in the
gangetic delta and Soil2T16s was collected 25 Km far from
the delta region of same tomato rhizosphere region. This
underscores their importance in soil ecosystems and
suggests their influential roles in organic matter
decomposition and nutrient cycling processes.

Taxonomy of Class: In comparing the bacterial classes in
Soil2T16s and Soil1T16s, notable differences in abundance
were observed. A total of six distinct bacterial classes were
identified: Actinobacteria, Alphaproteobacteria, Bacilli,
Betaproteobacteria, Deltaproteobacteria and
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Gammaproteobacteria. In Soil1T16s, Actinobacteria was the
most abundant class, with a read count of 10,548,
highlighting its dominance in the soil rhizosphere near the
water source**. Soil2T16s showed a higher abundance of
Alphaproteobacteria (3,884) compared to Soil1T16s (1,627)
and also had a higher count of Bacilli (5,792) compared to
Soil1T16s (2,498) as shown in fig. 4.

Alphaproteobacteria, including species like Pelagibacter
ubique and Rhodobacter sphaeroides, are known for their
metabolic  versatility and importance in  various
environmental processes®®%. Bacilli are prevalent in soil
and are known for producing valuable antibiotics® as in
figures 5 and 6. SoillT16s had a higher abundance of
Chloroflexia (37) compared to Soil2T16s (9) and Soil2T16s
had a higher count of Gammaproteobacteria (4,729)
compared to Soil1T16s (1,788).

Class
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Additionally, Soil1T16s had more Rubrobacteria (105) than
Soil2T16s (15). Gammaproteobacteria are diverse and play
significant roles in organic carbon turnover and nitrogen and
sulfur cycling in hydrothermal sediments?>4°, These bacteria
are selected based on ecophysiological and growth
differences influenced by the geochemical profiles at various
vent sites. Their metabolic diversity and adaptation are
crucial for maintaining biogeochemical cycles in various
environments, including polluted areas*.

The differences in microbial community composition
between Soil2T16s and SoillT16s can be attributed to
variations in environmental conditions and pollution levels,
with Soil2T16s, located farther from the delta, showing
higher abundance of certain bacterial classes due to these
factors.

Figure 5: Taxonomy of Class between the samples
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Figure 6: Comparative chart for top five abundant Class present in Soil1T16s and Soil2T16

Figure 7: Taxonomy of Order between the samples
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Taxonomy of Order: In comparing the abundance of
different bacterial orders in Soil2T16s and Soil1T16s,
significant variations are observed in the distribution of
various orders between the two soil samples. Soil1T16s is
dominated by the order Micrococcales, with a staggering
6,761 reads, followed by Burkholderiales (899 reads),
Enterobacterales (205 reads), Propionibacteriales (2,556
reads) and Pseudomonadales (1,371 reads). In contrast,
Soil2T16s exhibits a different pattern, with Bacillales being
the most abundant order, comprising of 5,691 reads. Other
dominant orders in Soil2T16s include Burkholderiales (727
reads), Pseudomonadales (3,125 reads), Rhizobiales (1,743
reads) and Rhodobacterales (1,147 reads) as mentioned in
figure 7. These stark differences in the relative abundances
of bacterial orders between the two soil samples suggest
distinct microbial compositions, potentially driven by
variations in environmental factors such as soil properties,
vegetation, or land use practices.

The core microbiome analysis of Cistanche deserticola soil
communities revealed a predominance of bacteria with traits
like drought, salt tolerance, alkali resistance and stress
resistance, particularly Micrococcales. This order is also
prominent in our sample Soil2T16S, which is typical of farm
soil with less water and drought conditions. Advanced
techniques such as LEfSe and random forest analysis
identified specific biomarkers that distinguish microbial
communities in different ecotypes: Oceanospirillales in
saline-alkali land, Sphingomonadales in grassland and
Propionibacteriales in sandy land.

A positive correlation was found between the plant
metabolite 2'-acetylacteoside and the abundance of
Oceanospirillales in saline-alkali soil. The metabolic
function profiles of these communities highlighted enriched
pathways in carbohydrate and amino acid metabolism, as
well as environmental information processing related to
membrane transport and signal transduction. These findings
highlight the adaptive strategies and functional roles of
microbial communities in supporting the growth and
resilience of C. deserticola in diverse ecological niches®.

Taxonomy of Family: The comparison between Soil2T16s
and SoillT16s reveals significant differences in the
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composition of bacterial families (Figure 8). While both
samples share some common families such as Bacillaceae,
Pseudomonadaceae and Streptomycetaceae, Soil2T16s has a
higher abundance of families like Nocardioidaceae,
Micrococcaceae and Vicinamibacteraceae. In contrast,
SoillT16s has a higher abundance of families like
Enterobacteriaceae, Enterococcaceae and Lactobacillaceae.
In Soil2T16s, the top five abundant families are Bacillaceae
with 4169 sequences, followed by Pseudomonadaceae
(2974), Nocardioidaceae (1801), Rhodobacteraceae (1144)
and Xanthomonadaceae (995). In contrast, SoillT16s
exhibits Micrococcaceae as the most abundant family with
5603 sequences, followed by Nocardioidaceae (2363),
Oxalobacteraceae (593), Streptomycetaceae (493) and
Bacillaceae (1601).

These differences may be attributed to variations in
environmental conditions, soil properties and vegetation
types between the two samples. The higher abundance of
Nocardioidaceae and Micrococcaceae in Soil2T16s may
indicate a greater presence of drought-tolerant and alkali-
resistant bacteria, while the higher abundance of
Enterobacteriaceae and Enterococcaceae in Soil1T16s may
indicate a greater presence of bacteria adapted to more
humid and nutrient-rich environments. Overall, the
comparison highlights the unique microbial communities
present in each soil sample and underscores the importance
of considering environmental factors when interpreting
microbial community composition.

Bacillaceae family are seen dominant in Soil2T16s, which
was collected from regular cultivation region away from the
gangetic flooding. The members of the family Bacillaceae
are known for their robustness, attributed to their ability to
form resistant endospores. This trait plays a crucial role in
shaping the ecology of these bacteria. Bacillaceae members
are dominant in various environments including soil where
they contribute significantly to soil ecology by cycling
organic matter. Additionally, they play essential roles in
promoting plant health and growth by suppressing plant
pathogens and aiding in phosphate solubilization. These
bacteria are pivotal in maintaining ecosystem balance and
supporting plant vitality through their diverse ecological
functions?4,

Figure 8: Taxonomy of Family between the samples
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The family Micrococcaceae, abundant in Soil1T16s from a
flood-prone area near the Ganga River, significantly
enhances soil microorganisms by metabolizing rhizospheric
organic acids (OAs) such as lactic, oxalic and citric acids,
serving as crucial carbon and energy sources. This
biostimulation is evidenced by increased enzymatic
activities like dehydrogenase and phosphatase, with lactic
and citric acids showing the most pronounced effects. These
OAs alter soil microbial community structures, promoting
genera like Micrococcaceae and facilitating the persistence
of plant growth-promoting bacteria (PGPB) such as
Pseudomonadaceae. Citric acid also supports Clostridiaceae
in addition to Micrococcaceae. These insights underscore the
potential of rhizospheric OAs as sustainable biostimulants to
enhance crop productivity by fostering beneficial microbial
growth, particularly Micrococcaceae?.

Taxonomy of Genus between samples: In the comparison
between the two soil samples, Soil2T16s and Soil1T16s, the
genus with the highest number of reads varies between the
samples. In Soil2T16s, the genus Actinosynnema stands out
with 318 counts, indicating its dominance in this sample. On
the other hand, in Soil1T16s, the genus Kocuria takes the
lead with a significant count of 4584, showcasing its
prevalence in this particular sample. These highest read
counts for Actinosynnema in Soil2T16s and Kocuria in
Soil1T16s highlight the distinct microbial compositions and
abundance patterns present in each soil sample, emphasizing
the diversity and variability of soil microbiota across
different environments. Notably, the genus Bacillus shows a
substantial difference, with 2481 counts in Soil2T16s
compared to 599 counts in Soil1T16s. This indicates a higher
prevalence of Bacillus in Soil2T16s.

Similarly, the genus Lysobacter exhibits a notable
difference, with 469 counts in Soil2T16s and only 19 counts
in SoillT16s, suggesting a much higher abundance in
Soil2T16s. The comparison also highlights variations in
other genera such as Clostridium, which shows 106 counts
in Soil1T16s and 9 counts in Soil2T16s, indicating a higher
presence in Soil1T16s. Additionally, Streptomyces displays
a substantial difference, with 360 counts in Soil1T16s and
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99 counts in Soil2T16s, suggesting a higher abundance in
Soil1T16s (Figures 9A and 9B).

In a study by Li et al*®, the inoculation of Kocuria Y1, a plant
growth-promoting  bacterium  (PGPB), significantly
enhanced maize growth and improved tolerance to salt
stress. This was achieved through enhanced nutrient
acquisition, improved redox potential, ion homeostasis and
increased photosynthetic capacity. Furthermore, Kocuria Y1
was found to reduce abscisic acid (ABA) levels and increase
indole-3-acetic acid (IAA) content in corn plants subjected
to NaCl stress conditions.

Meanwhile, Bacillus, prominently present in SoilT116S, is
recognized for its capability to produce various beneficial
substances for plant growth including gibberellins, indole-3-
acetic acid (IAA) and enzymes that solubilize nutrients.
These substances play crucial roles in promoting rapid plant
growth, particularly in stressful environments where
physiological changes can otherwise slow down plant
senescence. Moreover, Bacillus species produce secondary
metabolites such as antibiotics, siderophores and cell wall
hydrolases, which confer antagonistic effects against plant
pathogens and enhance systemic resistance.

These findings underscore the significant roles of Kocuria
and Bacillus in enhancing plant health and resilience,
highlighting their potential applications in agriculture. The
effectiveness of these bacteria is influenced by soil
characteristics and the genetic traits of plants, emphasizing
the intricate relationships within soil microbiomes and their
impact on agricultural sustainability®?.

Taxonomy of Species: In our study, the comparison
between the two soil samples, Soil2T16s and Soil1T16s, the
species diversity was not plotted because many of the
species were identified upto genus level only. In spite of this
technicalities, only a small portion of reads pertaining to
pertaining to Bacillus genus was identified into species
like Bacillus kochii , Bacillus simplex, Bacillus megaterium,

Bacillus foraminis, Bacillus coagulans and Bacillus
amyloliquefaciens.
mﬂ m SoillT16s
; \ A B Kocuria
mm ‘g u Bacillus
Streptomyces
m" ® lanthinobacterium
v B Massilia
m \ m u Luteitalea

m Sorangium
m Paenibacillus

u Sphingomonas

(B)
Figure 9 (A) and (B): Top ten genus found in Soil2T16s (A) and Soil1T16s (B)(In term of %)
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Figure 10: Comparative distribution of identified species belonging to Bacillus and Lactobacillus spp.
between the samples

There were also some Paenibacillus  antarcticus,
Paenibacillus mucilaginosus, Paenibacillus
baekrokdamisoli and Paenibacillus sp. Cedars. in small
numbers. From the genus Lactobacillus, there were species
like Lactobacillus backii, Lactobacillus
reuteri and Lactobacillus fermentum. We cannot compare
the species level to conclude because 2168 reads of unknown
bacteria were documented in Soil2T16s the highest in
Bacillus genus, likewise only 240 reads were there for that
same OTU in sampleSoil1T16s, but the species level is not
known. In Soil2T16s, the counts of various bacterial species
are as follows: Bacillus kochii had 231 counts, Bacillus
simplex had 57 counts, Bacillus megaterium had 14
counts, Bacillus foraminis had 8 counts, Bacillus coagulans
had 3  counts, Lactobacillus  backii  had 10
counts, Lactobacillus reuteri had 2 counts and Lactobacillus
fermentum had 1 count (Figure 10).

Other PGPRs namely Paenibacillus antarcticus,
Paenibacillus mucilaginosus, Paenibacillus
baekrokdamisoli and Paenibacillus sp. Cedars were the
species found in the genus Paenibacillus in less read counts
less than 10. They can promote the growth of the crop
directly through fixation of biological nitrogen, phosphate
solubilization, synthesis of phytohormone namely indole-3-
acetic acid (IAA) and siderophores synthesis that enable iron
acquisition into the crops. They help the crops in protection
against insect herbivores and phytopathogens including
bacteria, fungi, nematodes and viruses®. Lactobacillus
backii and other species of Lactobacillus are involved in
lactic acid degradation. These bacteria have the ability to
metabolise lactic acid and other substrate and produce
vitamins, hormones and other secondary metabolites. They
also produce various plant growth promoting traits viz.
antifungal activity, production of plant growth hormones,
enzymes and 1-amino cyclopropane carboxylate deaminase
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activity®. Likewise, the Bacillus spp. are also known for their
PGPR activities for instance Bacillus
amyloliquefaciens®, Bacillus kochii*t, Bacillus
simplex® and Bacillus megaterium®. These bacteria in soil
help the soil to provide PGPR and secondary metabolites to
protect the plants from pathogen attacks.

Conclusion

In conclusion, our study investigated the microbial
composition of SoillT16s and Soil2T16s, highlighting
distinct taxonomic patterns shaped by proximity to water
sources. SoillT16s, located nearer to water, exhibited a
predominance of Proteobacteria and Firmicutes, indicative
of conditions favoring higher moisture and nutrient
availability. In contrast, Soil2T16s, situated further from
water, showed a dominance of Actinobacteria, suggesting
adaptation to drier environments.

Despite limitations in species-level classification due to
database constraints, both samples contained plant growth-
promoting rhizobacteria (PGPRs), with Bacillus species
notably more abundant in Soil2T16s. These findings
underscore the influence of environmental factors on
microbial community structure, highlighting potential
implications for agricultural and ecological management
strategies.
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